Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.696
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116302, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38608381

RESUMEN

Benzene is a known contributor to human leukaemia through its toxic effects on bone marrow cells, and epigenetic modification is believed to be a potential mechanism underlying benzene pathogenesis. However, the specific roles of N6-methyladenosine (m6A), a newly discovered RNA post-transcriptional modification, in benzene-induced hematotoxicity remain unclear. In this study, we identified self-renewing malignant proliferating cells in the bone marrow of benzene-exposed mice through in vivo bone marrow transplantation experiments and Competitive Repopulation Assay. Subsequent analysis using whole transcriptome sequencing and RNA m6A methylation sequencing revealed a significant upregulation of RNA m6A modification levels in the benzene-exposed group. Moreover, RNA methyltransferase METTL14, known as a pivotal player in m6A modification, was found to be aberrantly overexpressed in Lin-Sca-1+c-Kit+ (LSK) cells of benzene-exposed mice. Further analysis based on the GEO database showed a positive correlation between the expression of METTL14, mTOR, and GFI and benzene exposure dose. In vitro cellular experiments, employing experiments such as western blot, q-PCR, m6A RIP, and CLIP, validated the regulatory role of METTL14 on mTOR and GFI1. Mechanistically, continuous damage inflicted by benzene exposure on bone marrow cells led to the overexpression of METTL14 in LSK cells, which, in turn, increased m6A modification on the target genes' (mTOR and GFI1) RNA. This upregulation of target gene expression activated signalling pathways such as mTOR-AKT, ultimately resulting in malignant proliferation of bone marrow cells. In conclusion, this study offers insights into potential early targets for benzene-induced haematologic malignant diseases and provides novel perspectives for more targeted preventive and therapeutic strategies.

2.
Angew Chem Int Ed Engl ; : e202405229, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613386

RESUMEN

Inverse sandwich complexes of Yb and Sm stabilized by a bulky b-diketiminate (BDI) ligand have been prepared: (BDI)Ln(h6,h6-C6H6)Ln(BDI); Ln = lanthanide. Coordinated benzene ligands can be neutral, di-anionic or, often controversially discussed, even tetra-anionic. The formal charge on benzene is correlated to assignment of the metal oxidation state which generally poses a problem. Herein, we take advantage of the structural similarities found when comparing CaII with YbII, and SrII with SmII complexes. In this work, we found an excellent overlap of the Ca/Yb inverse sandwich structures but a striking difference for the Sr/Sm pair. The much shorter Sm-N and Sm-C6H6 distances are strong evidence for a SmIII-benzene-4-SmIII assignment. This was further supported by NMR spectrometry, magnetic susceptibility, reactivity and comprehensive computational investigation.

3.
Environ Int ; 186: 108645, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615541

RESUMEN

Benzene is a broadly used industrial chemicals which causes various hematologic abnormalities in human. Altered DNA methylation has been proposed as epigenetic biomarkers in health risk evaluation of benzene exposure, yet the role of methylation at specific CpG sites in predicting hematological effects remains unclear. In this study, we recruited 120 low-level benzene-exposed and 101 control male workers from a petrochemical factory in Maoming City, Guangdong Province, China. Urinary S-phenylmercapturic acid (SPMA) in benzene-exposed workers was 3.40-fold higher than that in control workers (P < 0.001). Benzene-induced hematotoxicity was characterized by reduced white blood cells counts and nuclear division index (NDI), along with an increased DNA damage and urinary 8-hydroxy-2'-deoxyguanosine (all P < 0.05). Methylation levels of TRIM36, MGMT and RASSF1a genes in peripheral blood lymphocytes (PBLCs) were quantified by pyrosequencing. CpG site 6 of TRIM36, CpG site 2, 4, 6 of RASSF1a and CpG site 1, 3 of MGMT methylation were recognized as hot CpG sites due to a strong correlation with both internal exposure and hematological effects. Notably, integrating hot CpG sites methylation of multiple genes reveal a higher efficiency in prediction of integrative damage compared to individual genes at hot CpG sites. The negative dose-response relationship between the combined methylation of hot CpG sites in three genes and integrative damage enabled the classification of benzene-exposed individuals into high-risk or low-risk groups using the median cut-off value of the integrative index. Subsequently, a prediction model for integrative damage in benzene-exposed populations was built based on the methylation status of the identified hot CpG sites in the three genes. Taken together, these findings provide a novel insight into application prospect of specific CpG site methylation as epi-biomarkers for health risk assessment of environmental pollutants.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38630400

RESUMEN

Benzene, toluene, ethylbenzene, and xylene (BTEX) are ubiquitous in the environment, and all of them can cause neurotoxicity. However, the association between BTEX exposure and dyslexia, a disorder with language network-related regions in left hemisphere affected, remains unclear. We aimed to assess the relationship between BTEX exposure and dyslexic odds among school-aged children. A case-control study, including 355 dyslexics and 390 controls from three cities in China, was conducted. Six BTEX metabolites were measured in their urine samples. Logistic regression model was used to explore the association between the BTEX metabolites and the dyslexic odds. Urinary trans,trans-muconic acid (MU: a metabolite of benzene) was significantly associated with an increased dyslexic odds [odds ratio (OR) = 1.23, 95% confidence interval (CI): 1.01, 1.50], and the adjusted OR of the dyslexic odds in the third tertile was 1.72 (95% CI: 1.06, 2.77) compared to that in the lowest tertile regarding urinary MU concentration. Furthermore, the association between urinary MU level and the dyslexic odds was more pronounced among children from low-income families based on stratified analyses. Urinary metabolite levels of toluene, ethylbenzene, and xylene were not found to be associated with the dyslexic odds. In summary, elevated MU concentrations may be associated with an increased dyslexic odds. We should take measures to reduce MU related exposure among children, particularly those with low family income.

5.
Int J Hyg Environ Health ; 259: 114362, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38574449

RESUMEN

BACKGROUND: A growing literature has reported associations between traffic-related air pollution and breast cancer, however there are fewer investigations into specific ambient agents and any putative risk of breast cancer development, particularly studies occurring in populations residing in higher pollution areas such as Los Angeles. OBJECTIVES: To estimate breast cancer risks related to ambient air toxics exposure at residential addresses. METHODS: We examined the relationships between ambient air toxics and breast cancer risk in the Multiethnic Cohort among 48,665 California female participants followed for cancer from 2003 through 2013. We obtained exposure data on chemicals acting as endocrine disruptors or mammary gland carcinogens from the National-Scale Air Toxics Assessment. Cox proportional hazards models were used to estimate breast cancer risk per one interquartile range (IQR) increase in air toxics exposure lagged by 5-years. Stratified analyses were conducted by race, ethnicity, and hormone receptor types. RESULTS: Among all women, increased risks of invasive breast cancer were observed with toxicants related to industries [1,1,2,2-tetrachloroethane (hazard ratio [HR] = 4.22, 95% confidence interval [95% CI] 3.18-5.60), ethylene dichloride (HR = 2.81, 95% CI 2.20-3.59), and vinyl chloride (HR = 2.27, 95% CI 1.81, 2.85); these 3 agents were correlated (r2 = 0.45-0.77)]. Agents related to gasoline production or combustion were related to increased breast cancer risk [benzene (HR = 1.32, 95% CI 1.24, 1.41), ethylbenzene (HR = 1.20, 95% CI 1.13-1.28), toluene (HR = 1.29, 95% CI 1.20-1.38), naphthalene (HR = 1.11, 95% CI 1.02-2.22), acrolein (HR = 2.26, 95% CI 1.92, 2.65)]. Higher hazard ratios were observed in African Americans and Whites compared to other racial and ethnic groups (p-heterogeneity <0.05 for traffic-related air toxics, acrolein, and vinyl acetate). CONCLUSIONS: Our findings suggest that specific toxic air pollutants may be associated with increase breast cancer risk.

6.
ACS Sens ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565844

RESUMEN

As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/µg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38593437

RESUMEN

Wide-bandgap (WBG) inverted perovskite solar cells (PSCs) are used as the top cell for tandem solar cells, which is an effective way to outperform the Shockley-Queisser limit. However, the low efficiency and poor phase stability still seriously restrict the application of WBG inverted PSCs. Here, the surface of the WBG perovskite film was passivated by the synthesized 1,2,4-tris(3-thienyl)benzene (THB). The THB size well matches with the halogen ion vacancy on the perovskite surface, and the S atom in THB can strongly interact with Pb2+ on the surface of the WBG perovskite film to the greatest extent, which effectively passivates surface defects and suppresses the recombination of carriers caused by these defects. At the same time, the S atom in THB occupied the migration site of the halogen ions, which inhibits the migration of halogen ions. Due to the strong conjugation effect and stability of THB, it can be locked on the surface of perovskite to increase the lattice strength and inhibit the segregation of photoinduced halide, thus improving the performance and operational stability of PSCs. The THB-modified WBG (Eg = 1.71 eV) PSC achieves a maximum power conversion efficiency of 20.75%, and its 99.0% is retained after 1512 h at a relative humidity of 10-25%. Under the irradiation of 1000 lx LED light, the indoor power conversion efficiency of the THB-modified WBG PSC reaches 34.15%.

8.
Anal Sci ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642247

RESUMEN

The development of advanced functional nanomaterials for solid-phase microextraction (SPME) remains an imperative aspect of sample pretreatment. Herein, we introduce a novel SPME fiber consisting of graphene fibers modified with ordered mesoporous carbon nanotubes arrays (CNTAs) tailored for the determination of benzene series in oilfield wastewater, which is synthesized by an ionic liquid-assisted wet spinning process of graphene nanosheets, followed by a precisely controlled growth of metal-organic framework and subsequent pyrolysis treatment. The resulting robust microfiber structure resembles a "hairbrush" configuration, with a crumpled graphene fiber "stem" and high-order mesoporous CNTAs "hairs". This unique architecture significantly enhances the SPME capacity, as validated by gas chromatography-mass spectrometry. The hairbrush-like nanocarbon assembled microfibers possess structural characteristics, a high specific surface area, and numerous binding sites, offering efficient enrichment of benzene series compounds in oilfield wastewater, including benzene, ethylbenzene, m-xylene, p-xylene, and toluene. Our analysis demonstrates that these microfibers exhibit broad linear ranges (0.2-600 µg L-1), low detection limits (0.005-0.03 mg L-1), and excellent repeatability (3.2-5.5% for one fiber, 2.1-6.7% for fiber-to-fiber) for detection. When compared to commercial alternatives, these hairbrush-like nanocarbon-assembled microfibers exhibit significantly enhanced extraction efficiency for benzene series compounds.

9.
Molecules ; 29(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611743

RESUMEN

Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.

10.
Arch Toxicol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600397

RESUMEN

Benzene is used worldwide as a major raw material in a number of industrial processes and also a potent airborne pollutant emitted from traffic exhaust fume. The present systematic review aimed to identify potential associations between genetic polymorphisms and occupational benzene-induced genotoxicity. For this purpose, a total of 22 selected studies were carefully analysed. Our results revealed a positive relation between gene polymorphism and genotoxicity in individuals exposed to benzene, since 17 studies (out of 22) observed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing genes influencing, therefore, individuals' susceptibility to genomic damage induced by benzene. In other words, individuals with some genotypes may show increase or decrease DNA damage and/or higher or lower DNA-repair potential. As for the quality assessment, 17 studies (out of 22) were categorized as Strong or Moderate and, therefore, we consider our findings to be trustworthy. Taken together, such findings are consistent with the notion that benzene induces genotoxicity in mammalian cells being strongly dependent on the genetic polymorphism. Certainly, such findings are important for clarifying the role of biomarkers related to genotoxicity in human biomonitoring studies.

11.
J Environ Sci (China) ; 143: 201-212, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644017

RESUMEN

Silver (9 wt.%) was loaded on Co3O4-nanofiber using reduction and impregnation methods, respectively. Due to the stronger electronegativity of silver, the ratios of surface Co3+/Co2+ on Ag/Co3O4 were higher than on Co3O4, which further led to more adsorbed oxygen species as a result of the charge compensation. Moreover, the introducing of silver also obviously improved the reducibility of Co3O4. Hence the Ag/Co3O4 showed better catalytic performance than Co3O4 in benzene oxidation. Compared with the Ag/Co3O4 synthesized via impregnation method, the one prepared using reduction method (named as AgCo-R) exhibited higher contents of surface Co3+ and adsorbed oxygen species, stronger reducibility, as well as more active surface lattice oxygen species. Consequently, AgCo-R showed lowest T90 value of 183°C, admirable catalytic stability, largest normalized reaction rate of 1.36 × 10-4 mol/(h·m2) (150°C), and lowest apparent activation energy (Ea) of 63.2 kJ/mol. The analyzing of in-situ DRIFTS indicated benzene molecules were successively oxidized to phenol, o-benzoquinone, small molecular intermediates, and finally to CO2 and water on the surface of AgCo-R. At last, potential reaction pathways including five detailed steps were proposed.

12.
J Colloid Interface Sci ; 666: 88-100, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38583213

RESUMEN

K-doped Mn-Ce solid solution catalysts were synthesized using a combination of coprecipitation and hydrothermal methods, demonstrating excellent performance in benzene oxidation. The catalyst K1Ce5Mn5 exhibited comparable activity to noble metal catalysts, achieving a 90 % benzene conversion at approximately 194 ℃. Durable tests under dry and moist conditions revealed that the catalyst could maintain its activity for 50 h at 218 ℃ and 236 ℃, respectively. Characterization results indicated that the catalyst's enhanced activity resulted from the weakened Mn-O bonding caused by the introduction of K+, facilitating the activation of oxygen and its involvement in the reaction. CeOx, the main crystalline phase of Mn-Ce solid solutions, provided abundant oxygen vacancies for capturing and activating oxygen molecules for the weakened Mn-O structures. This conclusion was further supported by partial density of state analysis from density functional theory computations, revealing that the introduction of K+ weakened the orbital hybridization of Mn3d and O2p. Finally, in situ diffuse reflectance infrared Fourier-transform spectroscopy (in situ DRIFTS) studies on Ce5Mn5 and K1Ce5Mn5 catalysts suggested that the introduction of K+ promoted the conversion of adsorbed benzene. Furthermore, intermediate products were transformed more rapidly for K1Ce5Mn5 compared to Ce5Mn5.

13.
Phytomedicine ; 128: 155344, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38493721

RESUMEN

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.

14.
Sci Total Environ ; 926: 171719, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38490405

RESUMEN

In the majority of occupational settings within China, the concentrations of benzene are observed to fall markedly below the demarcated detection thresholds. Employing traditional risk assessment models, the presence of exceptionally low airborne benzene exposure concentrations may infuse heightened degrees of uncertainty. Consequently, the necessity arises to investigate risk assessment methodologies more apt for the prevalent exposure environment among employees. In the present study, a pharmacokinetic model premised on urinary benzene metabolites (S-PMA and t, t-MA) was employed to ascertain a more precise daily airborne benzene exposure concentration per individual. This value was integrated into the linear multistage model as the 'internal exposure concentration'. In conjunction with the U.S National Environmental Protection Agency's (EPA) inhalation risk assessment model predicated on the external exposure concentration, the Singapore Ministry of Manpower's (MOM) model, and the linear multistage (LMS) model, the carcinogenic and non-carcinogenic effects of benzene were evaluated for 1781 benzene-exposed employees across 76 enterprises in Jiangsu Province. Findings suggest that in the linear multilevel model assessment, the cancer risk levels based on t, t-MA and S-PMA were higher in the printing and recording media reproduction industry, automobile manufacturing industry, general equipment manufacturing industry and the furniture manufacturing industry (median 2.842 × 10-4, 2.819 × 10-4, 2.809 × 10-4, and 2.678 × 10-4), which align more consistently with the actual benzene exposure circumstances of each industry's study participants, with overall risk levels calculated by the linear multistage model exceeding those of the EPA inhalation risk assessment model and the MOM model. This implies that the linear multistage model of internal exposure, based on the reciprocal of benzene biomarkers S-PMA and t, t-MA for airborne benzene exposure, presents enhanced sensitivity and suitability for the current occupational health risk assessment of workers. Without doubt, biomarker-based benzene exposure risk assessment emerges as the optimal choice.


Asunto(s)
Benceno , Exposición Profesional , Humanos , Benceno/análisis , Exposición Profesional/análisis , Acetilcisteína , Ácido Sórbico , Biomarcadores/orina , Medición de Riesgo , Monitoreo del Ambiente/métodos
15.
Sci Total Environ ; 927: 171998, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38537821

RESUMEN

The adsorption capture of ambient volatile organic compounds (VOCs) is of practical importance for air quality management. Herein, unique anti-competitive adsorption behavior of benzene on a hydrophilic activated carbon (Procarb-900 (P900)) is evidenced in the presence of competing components (e.g., formaldehyde (FA) and/or moisture). Contrary to general expectations, the adsorption capacity of 10 Pa benzene (QB) onto P900 (30 mg) at the 99 % breakthrough level improves from 144.8 to 187 mg g-1 as the relative humidity (RH) increases from 0 to 25 %. Such pattern is maintained at 183.9 mg g-1 even at the relatively high RH of 50 %. Furthermore, QB exhibits a remarkable increase of 56.1 % (to 226.0 mg g-1) in the binary phase (100 ppm benzene plus 50 ppm FA) relative to its single phase (144.8 mg g-1). The kinetic studies confirm the occurrence of anti-competitive adsorption of benzene under humid conditions with the unusual decrease in rate constants at the elevated RHs (i.e., 25 and 50 %). The thermodynamic studies suggest the exothermic nature of benzene adsorption onto P900. The hydrophilicity of P900's outer surface promotes the preferential adsorption of polar FA and water vapor over non-polar benzene, which deforms the activated carbon texture and lowers the pore size distribution (PSD). The narrow PSD enhances benzene uptake in the complex systems due to the confinement effect. Overall, this study offers insights into the unique anti-competitive adsorption of non-polar VOCs (e.g., benzene) on hydrophilic microporous adsorbents in the presence of potential interferences such as polar water vapor and FA. These findings offer a guideline for the practical implementation of adsorption techniques for gaseous VOCs in humid conditions.

16.
Angew Chem Int Ed Engl ; : e202403017, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429994

RESUMEN

Crafting single-atom catalysts (SACs) that possess "just right" modulated electronic and geometric structures, granting accessible active sites for direct room-temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus-immitting strategy using a new phosphorus source (phosphorus nitride, P3 N5 ) to construct the phosphorus-rich copper (Cu) SACs, designated as Cu/NPC. These catalysts feature locally protruding metal sites on a nitrogen (N)-phosphorus (P)-carbon (C) support (NPC). Rigorous analyses, including X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS), validate the coordinated bonding of nitrogen and phosphorus with atomically dispersed Cu sites on NPC. Crucially, systematic first-principles calculations, coupled with the climbing image nudged-elastic-band (CI-NEB) method, provide a comprehensive understanding of the structure-property-activity relationship of the distorted Cu-N2 P2 centers in Cu/NPC for selective oxidation of benzene to phenol production. Interestingly, Cu/NPC has shown more energetically favorable C-H bond activation compared to the benchmark Cu/NC SACs in the direct oxidation of benzene, resulting in outstanding benzene conversion (50.3 %) and phenol selectivity (99.3 %) at room temperature. Furthermore, Cu/NPC achieves a remarkable turnover frequency of 263 h-1 and mass-specific activity of 35.2 mmol g-1 h-1 , surpassing the state-of-the-art benzene-to-phenol conversion catalysts to date.

17.
Toxicol Res (Camb) ; 13(2): tfae036, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38496383

RESUMEN

Benzene is known to be a common toxic industrial chemical, and prolonged benzene exposure may cause nervous system damage. At present, there were few studies on benzene-induced neurological damage. This research aimed to identify the protein biomarkers to explore the mechanism of nervous system damage caused by benzene. We established a benzene poisoning model of C57 mice by gavage of benzene-peanut oil suspension and identified differentially expressed proteins (DEPs) in brain tissue using tandem mass tag (TMT) proteomics. The results showed a significant weight loss and decrease in leukocyte and neutrophil counts in benzene poisoning mice compared to the control group. We also observed local cerebral oedema and small vessel occlusion in the cerebral white matter of benzene poisoning mice. TMT proteomic results showed that a total 6,985 proteins were quantified, with a fold change (FC) > 1.2 (or < 1/1.2) and P value <0.05 were considered as DEPs. Compared with the control group, we identified 43 DEPs, comprising 14 upregulated and 29 downregulated proteins. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis results showed that the candidate proteins were mainly involved in cholesterol metabolism, complement and coagulation cascades, african trypanosomiasis, PPAR signaling pathway, and vitamin digestion and absorption. Three proteins, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (UGT8), Apolipoprotein A-I (APOA1) and Complement C3 (C3) were validated using immunoblotting and immunohistochemical. In conclusion, our study preliminarily investigated the mechanism of benzene toxicity to the nervous system by analyzing DEPs changes in the brain.

18.
ACS Appl Mater Interfaces ; 16(10): 13071-13081, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38431899

RESUMEN

This study reports for the first time, to the best of our knowledge, a real-time detection of ultralow-concentration chemical gases using fiber-optic technology, combining a miniaturized Fabry-Perot interferometer (FPI) with metal-organic frameworks (MOFs). The sensor consists of a short and thick-walled silica capillary segment spliced to a lead-in single-mode fiber (SMF), housing a tiny single crystal of HKUST-1 MOF, imparting chemoselectivity features. Ethanol and benzene gases were tested, resulting in a shift in the FPI interference signal. The sensor demonstrated high sensitivity, detecting ethanol gas concentrations (EGCs) with a sensitivity of 0.428 nm/ppm between 24.9 and 40.11 ppm and benzene gas concentrations (BGCs) with a sensitivity of 0.15 nm/ppm between 99 and 124 ppm. The selectivity study involved a combination of three ultralow concentrations of ethanol, benzene, and toluene gases, revealing an enhancement factor of 436% for benzene and 140% for toluene, attributed to the improved miscibility of these conjugated ring molecules with the alkane chains of the ethanol-modified HKUST-1. Experimental tests confirmed the sensor's viability, demonstrating significantly improved response time and spectral characteristics through crystal polishing, indicating its potential for quantifying and detecting chemical gases at ultralow concentrations. This technology may prevent energy resource losses, and the sensor's small size and robust construction make it applicable in confined and hazardous locations.

19.
Ind Health ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38522926

RESUMEN

Librarians at a university had planned to check the collection prior to the library renovations that began in 2015. They had previous knowledge of the presence of a light greyish-white powder with an unpleasant odour (hereinafter referred to as 'powder') sprinkled between the pages of antiquarian books in the library archive. The purpose of this study was to identify this powder with the help of experts from both inside and outside the university. The powder was qualitatively analysed using gas chromatography with mass spectrometry after hexane extraction. The powder was examined under a polarised light microscope and a field-emission scanning electron microscope equipped with an energy-dispersive X-ray spectrometer. Benzene hexachloride (BHC) was detected in the powder. Talc was the most abundant particle in the powder. The powder also contained 0.52 wt% asbestos, which belonged to the tremolite-actinolite series. No other types of asbestos were detected. The powder was presumed to be a bulking agent for BHC, and its major constituent was talc. This is the first report on asbestos-containing insecticides.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38523212

RESUMEN

Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...